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Induction - Lesson

Introduction

Example 1

In Rainland, if it rains on one day, then it will always rain the next day. Suppose it is raining

today.

• Will it rain tomorrow?

• Will it rain in 10 days?

• Will it rain in 1000 days?

Example 1 Solution

Since it is raining today, it will rain tomorrow. Since it will rain tomorrow, it will rain in 2

days. And so on... Let’s summarize this in a table:

Day Will it rain in Rainland? Justification

Today Yes Given in question

Tomorrow Yes It is raining today

In 2 days Yes It will rain tomorrow

. . . . . . . . .

In 9 days Yes It will rain in 8 days

In 10 days Yes It will rain in 9 days

. . . . . . . . .

In 999 days Yes It will rain in 998 days

In 1000 days Yes It will rain in 999 days

. . . . . . . . .

Notice that there will never be a day without rain in Rainland since we will always be able to

trace back the rainy days to today.

This is an example of what we call induction, a method of proving that a mathematical statement

is true for all natural numbers.
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Background

In order to formally state the Principle of Mathematical Induction, we first need to introduce

some background concepts:

• The natural numbers, represented using the symbol N, is the set of positive whole numbers:

N = {1, 2, 3, 4, 5, ...}

We write n ∈ N if n is a natural number and n /∈ N if n is not a natural number. For example,

1 ∈ N and 234 ∈ N, but 0 /∈ N and 4.6 /∈ N.

• A mathematical statement is a sentence that is either true or false. ‘The sky is beautiful

today’ is not a mathematical statement because it’s an opinion. However, ‘5 is a whole number’

or ‘2 = 9’ are both mathematical statements: the former is true and the latter is false. We

typically just use the word ‘statement’ to refer to a mathematical statement.

• Let P (n) be a statement which depends on a natural number n. Consider the statement ‘For

all n ∈ N, P (n)’. For this statement to be true, P (n) must be true for every natural number n.

If there is a single natural number n for which P (n) is false, then ‘For all n ∈ N, P (n)’ is false.

• For example, Goldbach’s conjecture states that ‘every even natural number greater than 2 can

be written as the sum of two prime numbers’. This has been verified to be true for all natural

numbers less than 4 × 1018 (four quintillions) but it is still not considered true because it has

yet to be proven for all even natural numbers.

Exercise 1

For each of the following statements, determine whether it is True or False and provide justi-

fication.

1. For all n ∈ N, n− 1 ∈ N.

2. For all n ∈ N, n + (n + 1) is odd.

3. For all n ∈ N, n + 1 ≤ 2n.

4. For all n ∈ N, n2 + 1 ≤ 100n.

5. For all n ∈ N, n + 1 ∈ N.
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Exercise 1 Solution

1. False: if n = 1, 1− 1 = 0 is not a natural number.

2. True: for any n ∈ N, n + (n + 1) = 2n + 1. Since 2n is even, 2n + 1 is odd.

3. True: n + 1 ≤ 2n is equivalent to 1 ≤ n (subtract n from both sides). This is true for all

n ∈ N (by definition of the natural numbers).

4. False: when n = 100, we get 1002 + 1 ≤ 1002 which is false.

5. True: if n is a positive whole number, then so is n+ 1. Therefore the statement is true by

definition of the natural numbers.

Principle of Mathematical Induction

In mathematics, a proof is a method of communicating mathematical thinking. More specifically,

it is a logical argument which explains why a statement is true or false.

Principle of Mathematical Induction

Let P (n) be a statement which depends on a variable n ∈ N (e.g., in Example 1, P (n) was ‘it

will rain in n days’). If,

1. P (1) is true.

2. For any k ≥ 1, if P (k) is true, then P (k + 1) is also true.

Then P (n) is true for all natural numbers n.

We can use induction to prove that P (n) is true for all natural numbers n by writing a four-part

proof:

• Base Case: Prove that P (1) is true.

• Inductive Hypothesis: Let k ∈ N and assume that P (k) is true.

• Inductive Step: Using P (k), prove that P (k + 1) is true.

• Conclusion: By the Principle of Mathematical Induction, conclude that P (n) is true for all

n ∈ N.
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Example 1 Revisited

• Base case: It will rain today, therefore it will rain tomorrow (P (1) is true).

• Inductive Hypothesis: Let k ∈ N and assume that it will rain in k days (assume P (k)

is true).

• Inductive Step: By the rules of Rainland, since it will rain in k days, it will rain in

k + 1 days (P (k) implies P (k + 1) is true).

• Conclusion: By the Principle of Mathematical Induction, we can conclude that, for any

n ∈ N, it will rain in n days (therefore P (n) is true for all natural numbers n).

Therefore there will never be a day where it doesn’t rain.

Breaking up the proof into the different steps makes it easier for the reader, and also decreases the

likelihood of mistakes in the logic, especially for more complicated proofs.

Example 2: the Domino analogy

Suppose we have an infinite number of dominoes lined up, starting at a certain point. If we

tip the first domino, then it will cause the next one to fall, which will cause the next one to

fall, and so on... Thus, every domino will fall:

Source: Taken from Richard Hammack’s Book of Proof
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Induction is considered to be an axiom. That is, the Principle of Mathematical Induction is ‘self-

evident’, and does not require a proof.

Review of exponents

If a is a real number (a number on the number line) and b is a natural number, then

ab = a× a× ...× a︸ ︷︷ ︸
b times

For example,

• 27 = 2× 2× ...× 2︸ ︷︷ ︸
7 times

• (4.167)4 = 4.167× 4.167× 4.167× 4.167

• 1001 = 100

One useful property of exponents is that, for all real numbers a and natural numbers b and c,

ab × ac = a× a× ...× a︸ ︷︷ ︸
b times

× a× a× ...× a︸ ︷︷ ︸
c times

= a× a× ...× a︸ ︷︷ ︸
b+ c times

= ab+c

Notably, ab = a1 × ab−1 = a× ab−1.

Example 3

Use induction to prove that n + 1 ≤ 2n for all n ∈ N.

Example 3 solution

Let P (n) be n + 1 ≤ 2n.

• Base Case: when n = 1, 1 + 1 ≤ 21 is true so P (1) is true.

• Inductive Hypothesis: Let k be a natural number and assume P (k): k + 1 ≤ 2k.

• Inductive Step: We need to prove P (k + 1): (k + 1) + 1 ≤ 2k+1.
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First, we can add 1 to both sides of P (k) to make the left side of the inequality (k+1)+1:

(k + 1) + 1 ≤ 2k + 1

Since 2k is at least 1, we obtain

2k + 1 ≤ 2k + 2k = 2× 2k = 2k+1

Therefore, combining these two inequalities, we get

(k + 1) + 1 ≤ 2k + 1 ≤ 2k+1

so P (k + 1) is true.

• Conclusion: By the Principle of Mathematical Induction, n + 1 ≤ 2n for all n ∈ N.

Whenever we approach a problem using induction, we should always ask ourselves: how can the

statement P (k) be applied to prove P (k + 1)? The tricky part of proofs is not arriving at an answer

(we already know the statement we need to prove), but rather finding the steps in between.

A Harder Induction Problem

Example 4

Prove that, for all n ∈ N, every 2n by 2n grid of squares with exactly one square removed can

be covered by triominoes (without overlap). A triomino is an L-shaped tile with 3 squares:

Example 4 Solution

We prove this result by induction on n, where P (n) is ‘all 2n × 2n grids of squares with one

square removed can be covered by triominoes’.

6



• Base Case: The statement P (1) is given by: All 2× 2 grids of squares with one square

removed can be covered by triominoes. All 2×2 grids with one square removed are given

by or or or . They can all be covered by a single triomino, rotated by either

0◦, 90◦, 180◦ or 270◦. Therefore, P (1) is true.

• Inductive Hypothesis: Let k ∈ N and assume that P (k) is true: all 2k × 2k grids of

squares with one square removed can be covered by triominoes. Note this includes every

possible position for the empty square within the grid.

• Inductive Step: We wish to prove P (k + 1), which stands for: All 2k+1 × 2k+1 grids of

squares with one square removed can be covered by triominoes. Consider a 2k+1 × 2k+1

grid with one square removed (where the missing square is drawn in black):

Our inductive hypothesis can only be used on 2k × 2k grids, so we first need to ask

ourselves: how are 2k × 2k grids related to 2k+1 × 2k+1 grids?

We know 2k+1 = 2(2k) = 2k + 2k. Thus, we can split our 2k+1 × 2k+1 grid in half,

horizontally and vertically, to obtain four 2k × 2k subgrids:

The missing square occurs in one of these four subgrids. Now, to start covering the grid

by triominoes, we’ll place one tile around the centre of the grid, covering a corner square

in each of the three 2k × 2k subgrids that do not contain the missing square:
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We can now view the grid as being made up of four 2k × 2k subgrids, each with one

square missing. The Inductive Hypothesis tells us that each of these four grids can be

covered by triominoes. Together with the initial triomino in the centre, this means that

the 2k+1 × 2k+1 grid (with the missing black square) can be covered by triominoes. This

proves that P (k + 1) is true.

• Conclusion: By the Principle of Mathematical Induction, we can conclude that for any

n ∈ N, every 2n × 2n grid with one square removed can be covered by triominoes.

Induction to Prove Summation Formulas

Example 5

Using induction, prove that 1 + 2 + ... + 2n = 2n+1 − 1 for all n ∈ N.

Example 5 solution

Let P (n) be the statement 1 + 2 + ... + 2n = 2n+1 − 1.

• Base Case: when n = 1, 1 + 2 = 22 − 1 is true, therefore P (1) is true.

• Inductive Hypothesis: Let k ∈ N and assume P (k) is true: 1 + 2 + ... + 2k = 2k+1 − 1.

• Inductive Step: using P (k),

1 + 2 + ... + 2k + 2k+1 = (1 + 2 + ... + 2k) + 2k+1

= (2k+1 − 1) + 2k+1

= 2k+1 + 2k+1 − 1

= 2(k+1)+1 − 1
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therefore P (k + 1) is true.

• Conclusion: 1 + 2 + ... + 2n = 2n+1 − 1 for all n ∈ N.

Induction provides us a nice way to prove summation formulas because, as seen above, we can use

the inductive hypothesis to reduce a summation to a more approachable expression.

Exercise 2

Use induction to prove that the sum of the first n odd natural numbers is n2. That is, prove

that

1 + 3 + 5 + ... + (2n− 1) = n2

for all n ∈ N.

Hint: For all n ∈ N, (n + 1)2 = n2 + 2n + 1.

Exercise 2 Solution

Let P (n) be the statement 1 + 3 + 5 + ... + (2n− 1) = n2.

• Base Case: when n = 1, 1 = 12 therefore P (1) is true.

• Inductive Hypothesis: Let k ∈ N and assume P (k) is true: 1 + 3 + ... + (2k − 1) = k2.

• Inductive Step: using P (k) and the hint,

1 + 3 + ... + (2k − 1) + (2k + 1) = (1 + 3 + ... + (2k − 1)) + (2k + 1)

= (k2) + (2k + 1)

= k2 + 2k + 1

= (k + 1)2

Therefore P (k + 1) is also true.

• Conclusion: 1 + 3 + 5 + ... + (2n− 1) = n2 for all n ∈ N.
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Strong Induction

Recall the domino analogy: ‘if one domino falls, then the next one will also fall’. However, if we

start by tipping the first domino, by the time we’ll have reached domino k + 1 (for some k ∈ N),

then dominoes 1, 2, ..., k − 1, and k will all have fallen. Therefore, we can strengthen our induction

hypothesis without affecting the underlying logic.

Strong Induction

Let P (n) be a statement which depends on a variable n ∈ N. If,

1. P (1) is true.

2. For all k ≥ 1, if P (1), P (2), ..., P (k − 1), P (k) are all true, then P (k + 1) is also true.

Then P (n) is true for all n ∈ N.

Stop and Think

Can we use the Principle of Mathematical Induction to prove Strong Induction?

Exercise 3

A chocolate bar is a rectangular grid of chocolate squares. We can break any chocolate bar by

making one straight horizontal or vertical break (along the grid lines), separating the bar into

two smaller chocolate bars. For Example, if we had a 2× 5 chocolate bar:

we could break it into a 2× 2 bar and 2× 3 bar:

If we start with a chocolate bar with N squares (in the above example N = 2× 5 = 10), how

many breaks will it take to obtain N individual 1× 1 pieces? Hint: use strong induction on N
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Exercise 3 Solution

No matter how we break the chocolate bar, it will always take N − 1 breaks to separate the bar

into individual squares. We use strong induction on N to show this. Let P (N) be the statement:

every chocolate bar with N pieces take N − 1 breaks to separate into individual squares.

• Base Case: if N = 1, the chocolate bar a 1×1 square and so we will require 0. Therefore,

P (1) is true.

• Inductive Hypothesis: Let k ∈ N and assume P (k′) is true for all k′ ≤ k. That is, for

all k′ ≤ k, assume that any chocolate bar with k′ pieces will take k′− 1 breaks to separate

into individual squares.

• Inductive Step: Consider the first time we break a k + 1 piece chocolate bar. We will

obtain two resulting bars, with A and B pieces. Note A + B = k + 1 since we do not

change the amount of chocolate. By our inductive hypothesis, it will take A − 1 breaks

to separate the first chocolate bar into individual squares, and B − 1 breaks to separate

the second chocolate bar into individual squares. Therefore, including the first break we

made, there will be a total of

(A− 1) + (B − 1) + 1 = (A + B)− 1 = (k + 1)− 1

breaks. Since our first break was arbitrary, this will be true no matter how we break the

chocolate bar.

• Conclusion: By Strong Induction, we can conclude that any chocolate bar with N squares

must be broken exactly N −1 times in order to be separated into individual 1×1 squares.
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